
BAPC 2019
The 2019 Benelux Algorithm Programming Contest

Problems
A Appeal to the Audience
B Breaking Branches
C Conveyor Belts
D Deck Randomisation
E Efficient Exchange
F Find my Family
G Gluttonous Goop
H Historic Exhibition
I Inquiry II
J Jazz it Up!
K Keep Him Inside
L Lucky Draw

Copyright © 2019 by The BAPC 2019 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Problem A: Appeal to the Audience 3

A Appeal to the Audience Time limit: 1s

You are the director of the upcoming Bordfite Arena
Progaming Competition. You have invited a bunch
of players and are now setting up the matches for the
knockout tournament that will determine the winner.
As you may know, Bordfite Arena is a game that heav-
ily rewards skill and very little luck is involved. This
implies that whenever any number of players play a game of Bordfite Arena, the most skilled
player will always win! Hence the winner of the tournament is already known, and you are a
bit worried about this. How will you appease the audience?

You embark on a short quest to find out what the audience finds interesting. No surprises
there: people find it most interesting when they see skillful players compete. Whenever a
match is played, the happiness the audience gets from a match is the sum of the skill levels
of the players. The total happiness the audience gets from the tournament is the sum of the
happiness obtained during all matches. This is very useful information, because of course you
want the audience to be as happy as possible at the end of the tournament.

Moreover, you invested some time to ask people what kind of knockout format they like. It
turns out that instead of the plain old binary tree for the knockout schedule, they prefer a
specific weird-looking rooted tree, and so you decide to use that. This means the final step
for you to complete is to divide the players over the leaves of the given tree so that over the
entire tournament, the happiness of the audience is maximized.

Input

• The first line contains integers 3 ≤ n ≤ 105 and 1 ≤ k ≤ n− 1, the number of nodes of
the tree and the number of players. The nodes are labelled 0 through n − 1, and 0 is
the root of the tree.

• The second line contains k integers 0 ≤ a1, . . . , ak ≤ 109, denoting the skill values of
the players.

• Then follow n− 1 lines, the ith of which (1 ≤ i ≤ n− 1) contains the parent 0 ≤ pi < i

of node i.

It is guaranteed that the tree has exactly k leaves and that there are no nodes with exactly
one child.

Output

• Output the maximal possible happiness the audience can obtain from this tournament.

4 Problem A: Appeal to the Audience

Sample Input 1 Sample Output 1
5 3
5 4 3
0
0
1
1

17

Sample Input 2 Sample Output 2
11 7
30 5 15 1 3 100 50
0
0
1
0
2
5
2
5
5
1

454

Problem B: Breaking Branches 5

B Breaking Branches Time limit: 1s

CC-BY 2.0 By DymphieH on
Flickr

Your parents decided that it would be “fun” to spend the entire
Sunday walking near the Mookerheide close to Nijmegen.

Although you can pass the time by solving programming problems
in your head, your siblings do not have the same luxury. After a
short while, your younger sister Alice and your big brother Bob
find themselves hopelessly bored. Together, they try to figure out
if they can pass the time with a game (a problem that would later
be referred to as the Bob and Alice Pastime Conundrum). Finally,
they come up with the following simple game.

They find a single branch of length n that will be the main object of the game. Alternatingly,
Alice and Bob choose a piece of branch and break it into two parts, in such a way that both
parts have integer lengths. The last player who is able to break one of the pieces wins. Alice
gets to start, as she is the younger of the two.

Of course, you already have the game figured out in your head. Assuming Bob plays optimally,
can Alice win the game? And if so, what move should she make first?

Input

• A line containing a single integer 2 ≤ n ≤ 109, the length of the branch.

Output

• On the first line print the name of the person who wins, Alice or Bob.

• If Alice can win, print the length of a piece of branch Alice can break off as a winning
move. This should be an integer between 1 and n− 1, inclusive.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
2 Alice

1

Sample Input 2 Sample Output 2
3 Bob

This page is intentionally left blank.

Problem C: Conveyor Belts 7

C Conveyor Belts Time limit: 1s

You are an employee of the Boxing And Processing Com-
pany and you are tasked with distributing boxes in one
of the company’s enormous warehouses. At BAPC Ltd.,
boxes travel by conveyor belt. Two conveyor belts can be
merged into one by letting one drop its content onto the
other. On the other hand, a belt can be split into two by
using a splitter, which sends a specific portion of its input
to its first output and the rest to its second output. Nor-
mally your splitters are adjustable, being able to distribute
its input over its output belts in any conceivable ratio, but in an attempt to cut costs your
boss has ordered cheap knock-off splitters which can only distribute its input in a fixed ratio
a : b. Instead of arguing with your boss about how you really need some c : d splitters, you
decide to make them yourself.

Of course, with your frugal boss, you have to watch your costs. You cannot build your
splitter system in such a way that there are boxes that never leave the system. Nor can you
use splitters that never receive any boxes. Finally, you cannot use too many a : b splitters in
total.

Given the ratios a : b and c : d, construct a network of belts and at most 200 knock-off a : b

splitters that has a single global input belt and two global output belts over which the global
input is distributed in a ratio c : d.

Note that a splitter of ratio x : y sends exactly x
x+y of the incoming boxes to the first output

and exactly y
x+y of them to the second output.

Input

• The first line contains two integers 1 ≤ a, b ≤ 109 with a + b ≤ 109 denoting the ratio
a : b of your knock-off splitter.

• The second line contains two integers 1 ≤ c, d ≤ 109 with c + d ≤ 109 denoting the ratio
c : d of your desired splitter.

Output

• The first line contains an integer 1 ≤ n ≤ 200, the number of a : b splitters used.

• Then follow n lines, the i-th of which contains two integers −2 ≤ li, ri < n.

Here li is the index of the splitter connected to the left output of the i-th splitter, where it
deposits a/(a + b) of its input. Similarly ri is the index of the splitter receiving b/(a + b) of
the input of the i-th splitter. The splitters are indexed starting from 0. The global input is
connected to splitter 0. The special values −1 and −2 for li and ri correspond to the first

8 Problem C: Conveyor Belts

and second global output, which need to receive c/(c + d) and d/(c + d) of the global input
respectively.

Note that you cannot place a splitter in such a way that no box ever reaches it, nor in such
a way that a box that passes through it will never reach the output.

If there are multiple possible solutions, you may output any one of them.

Sample Input 1 Sample Output 1
2 3
3 2

1
-2 -1

Sample Input 2 Sample Output 2
1 2
3 4

3
-1 1
2 1
0 -2

Sample Input 3 Sample Output 3
1 2
1 2

3
-2 1
2 0
1 -1

Problem D: Deck Randomisation 9

D Deck Randomisation Time limit: 1s

CC-BY-SA 4.0 By Alexey Musulev on
wikimedia.org

Alice and Bob love playing Don’tminion, which typically
involves a lot of shuffling of decks of different sizes. Because
they play so often, they are not only very quick at shuffling,
but also very consistent. Each time Alice shuffles her deck,
her cards get permuted in the same way, just like Bob
always permutes his cards the same way when he shuffles
them. This isn’t good for playing games, but raises an
interesting question.

They know that if they take turns shuffling, then at some
point the deck will end up ordered in the same way as when they started. Alice shuffles once
first, then Bob shuffles once, then Alice shuffles again, et cetera. They start with a sorted
deck. What they do not know, however, is how many shuffles it will take before the deck is
sorted again.

Can you help them compute how many shuffles it will take? As Alice and Bob can only do
1012 shuffles in the limited time they have, any number strictly larger than this should be
returned as huge instead.

Input

• The first line contains a single integer 1 ≤ n ≤ 105, the number of cards in the deck.

• The second line contains n distinct integers 1 ≤ a1, a2, . . . , an ≤ n, where ai is the new
position of the card previously at position i when Alice shuffles the deck.

• The third line contains n distinct integers 1 ≤ b1, b2, . . . , bn ≤ n, where bi is the new
position of the card previously at position i when Bob shuffles the deck.

Output

• Output a single positive integer m > 0, the minimal number of shuffles required to sort
the deck, or huge when this number is strictly larger than 1012.

Sample Input 1 Sample Output 1
3
2 3 1
3 1 2

2

Sample Input 2 Sample Output 2
6
5 1 6 3 2 4
4 6 5 1 3 2

5

10 Problem D: Deck Randomisation

Sample Input 3 Sample Output 3
8
1 4 2 6 7 8 5 3
3 6 8 4 7 1 5 2

10

Problem E: Efficient Exchange 11

E Efficient Exchange Time limit: 3s

You have recently acquired a new job at the Bank for Acquiring
Peculiar Currencies. Here people can make payments, and de-
posit or withdraw money in all kinds of strange currencies. At
your first day on the job you help a customer from Nijmegia, a
small insignificant country famous for its enormous coins with
values equal to powers of 10, that is, 1, 10, 100, 1000, etc. This
customer wants to make a rather large payment, and you are
not looking forward to the prospect of carrying all those coins
to and from the vault.

You therefore decide to think things over first. You have an
enormous supply of Nijmegian coins in reserve, as does the customer (most citizens from
Nijmegia are extremely strong). You now want to minimize the total number of coins that
are exchanged, in either direction, to make the exact payment the customer has to make.

For example, if the customer wants to pay 83 coins there are many ways to make the exchange.
Here are three possibilities:

Option 1. The customer pays 8 coins of value 10, and 3 coins of value 1. This requires
exchanging 8 + 3 = 11 coins.

Option 2. The customer pays a coin of value 100, and you return a coin of value 10, and 7
coins of value 1. This requires exchanging 1 + 1 + 7 = 9 coins.

Option 3. The customer pays a coin of value 100, and 3 coins of value 1. You return 2 coins
of value 10. This requires exchanging 1 + 3 + 2 = 6 coins.

It turns out the last way of doing it requires the least coins possible.

Input

• A single integer 0 ≤ n < 101000, the amount the customer from Nijmegia has to pay.

Output

• Output the minimum number of coins that have to be exchanged to make the required
payment.

Sample Input 1 Sample Output 1
83 6

12 Problem E: Efficient Exchange

Sample Input 2 Sample Output 2
13 4

Sample Input 3 Sample Output 3
0 0

Sample Input 4 Sample Output 4
12345678987654321 42

Problem F: Find my Family 13

F Find my Family Time limit: 7s

CC-BY 2.0 By Ivan on Flickr

You are looking for a particular family photo with
you and your favorite relatives Alice and Bob. Each
family photo contains a line-up of n people. On the
photo you’re looking for, you remember that Alice,
who is taller than you, was somewhere on your left
from the perspective of the photographer. Also, Bob
who is taller than both you and Alice, was standing
somewhere on your right.

Since you have a large number of family photos, you want to use your computer to assist
in finding the photo. Many of the photos are quite blurry, so facial recognition has proven
ineffective. Luckily, the Batch Apex Photo Classifier, which detects each person in a photo
and outputs the sequence of their (distinct) heights in pixels, has produced excellent results.
Given this sequence of heights for k photos, determine which of these photos could potentially
be the photo you’re looking for.

Input

• The first line contains 1 ≤ k ≤ 1000, the number of photos you have to process.

• Then follow two lines for each photo.

– The first line contains a single integer 3 ≤ n ≤ 3 · 105, the number of people on
this photo.

– The second line contains n distinct integers 1 ≤ h1, . . . , hn ≤ 109, the heights of
the people in the photo, from left to right.

It is guaranteed that the total number of people in all photos is at most 3 · 105.

Output

• On the first line, output the number of photos k that need further investigation.

• Then print k lines each containing a single integer 1 ≤ ai ≤ n, the sorted indices of the
photos you need to look at.

Sample Input 1 Sample Output 1
1
3
2 1 3

1
1

14 Problem F: Find my Family

Sample Input 2 Sample Output 2
4
4
140 157 160 193
5
15 24 38 9 30
6
36 12 24 29 23 15
6
170 230 320 180 250 210

2
2
4

Problem G: Gluttonous Goop 15

G Gluttonous Goop Time limit: 3s

As a prominent researcher in the laboratorium for Breathtaking Agriculture through Petri
dish Cultivation, you keep on looking for new organisms that might be the food of the future.
Recently you have discovered a new fungus-type organism that seems to be nutritious and
very efficient in converting energy from food to body mass. You have placed a small batch
surrounded by food in a petri dish and watched it grow for a bit.

However, now that the weekend has arrived, you would rather spend some time with your
loved ones than stare at the contents of this petri dish all the time (even though it is a
fun guy). You cannot leave without taking the necessary precautions. What if the fungus
grows too large and starts eating away at the rest of the laboratory?!

You model the situation as follows: you divide the plane into 1× 1-squares, and draw where
the fungus currently is. You know that every time step, if the fungus occupies a square, it
will expand to all eight neighbouring squares (and still occupy the initial square). You know
how many time steps you will be gone for over the weekend, and now you want to know how
many squares the fungus will occupy when you get back.

Figure G.1: Example of fungus growth: the fungus from sample 2 after 0, 1, 2 time steps. The middle
image corresponds to the correct output for sample 2.

N.B.: In the input, the fungus will be given on a finite grid, but it can (and will!) grow
beyond these boundaries. The fungus is not so easily contained.

Input

• First a line containing integers 1 ≤ r, c ≤ 20, and 0 ≤ k ≤ 106, denoting the number of
rows and columns of the initial grid and the number of time steps.

• Then follow r lines of c characters, each character being either ‘.’ or ‘#’. A ‘#’ denotes
that the fungus is occupying this square. The fungus need not be connected.

Output

• Output the number of squares the fungus occupies after k time steps have passed.

16 Problem G: Gluttonous Goop

Sample Input 1 Sample Output 1
5 5 3
.....
.###.
.#.#.
.###.
.....

81

Sample Input 2 Sample Output 2
3 3 1
#..
.#.
..#

19

Sample Input 3 Sample Output 3
4 6 3
..##..
.#..#.
.#..#.
..##..

96

Sample Input 4 Sample Output 4
1 1 1000000
#

4000004000001

Problem H: Historic Exhibition 17

H Historic Exhibition Time limit: 1s

The Benelux Artistic Pottery Consortium is preparing for an exhibit of its most prized urns
and vases at a gallery in Nijmegen. Due to the sheer number of vases to be put on display the
gallery has trouble finding a pedestal of the right size for every single vase. They have pedestals
available that can either be placed normally or upside down and can be characterised by the
diameter of their top and bottom surface. Moreover, the diameter of the top and bottom
varies by at most one unit length.

For artistic reasons, it is important that the diameter of the base of a vase matches the
diameter of the surface of the pedestal it is placed on. You have been asked to find a way to
place all the vases on available pedestals. In order to make this work, you might need to turn
some of the pedestals upside down. For example, Figure H.1 shows a possible assignment of
pedestals to vases for sample input 1. Assist the gallery by writing a program to compute
such an assignment.

2 2 2

1 2 3

1 2 3

Figure H.1: Solution for sample input 1.

Input

• The first line contains two integers 0 ≤ p, v ≤ 104 the number of pedestals and the
number of vases.

• Then follow p lines, the i-th of which contains two integers 1 ≤ ai, bi ≤ 104 denoting
the diameters of the different sides of pedestal i. It is given that |ai − bi| ≤ 1.

• Then follows a single line containing v integers 1 ≤ c1, . . . , cv ≤ 104, where ci denotes
the diameter of vase i.

Output

• Output v distinct integers 1 ≤ x1, . . . , xv ≤ p such that vase i can stand on pedestal xi,
or print impossible if no assignment of vases to pedestals exists.

If there are multiple possible solutions, you may output any one of them.

18 Problem H: Historic Exhibition

Sample Input 1 Sample Output 1
4 3
1 2
4 5
2 3
2 2
1 2 3

1
4
3

Sample Input 2 Sample Output 2
2 2
1 1
2 3
1 1

impossible

Sample Input 3 Sample Output 3
2 3
9 8
4 5
4 9 5

impossible

Problem I: Inquiry II 19

I Inquiry II Time limit: 5s

For an undirected, simple graph G = (V, E) we call a subset V ′ ⊆ V an independent set if no
two elements of V ′ are connected by an edge. An independent set of G is called a maximum
independent set if there is no independent set in G with strictly more vertices. Given a specific
kind of connected graph G, find the size of a maximum independent set of G.

Input

• The input starts with one line, containing integers n (1 ≤ n ≤ 100), the number of
vertices in the graph, and m (n− 1 ≤ m ≤ n + 15), the number of edges in the graph.

• Then follow m lines, each containing integers a, b (1 ≤ a, b ≤ n) indicating that there is
an edge between vertices a and b.

The graph given by this input is guaranteed to be both simple and connected: there is at
most one edge between each pair of vertices, there are no loops, and there is a path between
each pair of vertices.

Output

• Output the number of vertices in a maximum independent set of the input graph.

Sample Input 1 Sample Output 1
2 1
1 2

1

Sample Input 2 Sample Output 2
4 5
1 2
2 3
3 4
4 1
1 3

2

This page is intentionally left blank.

Problem J: Jazz it Up! 21

J Jazz it Up! Time limit: 1s

� � �� �� �
3

3
333

� �� � ��� 45 �� ���

Music engraving by LilyPond 2.18.2—www.lilypond.org

Along with some friends you formed the Band
of Atonal Percussionists and Cellists. You have
been playing for some years together, but you feel
unsatisfied with the current level of play. Doing
research into some interesting new styles, you are gripped by the intricate details of the world
of jazz.

While of course you cannot apply all the new things you have learned immediately, you want
to start with improvising some nice new rhythmic figures in the music your band plays. You
will play a rhythm where every bar has n beats in it, but then you split up every beat into
m notes. In total, you will have nm notes per bar.

Everyone in the band knows that there is no room for squares in jazz. So the number of notes
in a bar should be squarefree. That is, there is no number k > 1 such that k2 divides the
number of notes in a bar.

The percussionist has already suggested a number of beats per bar n; now it is up to you to
find a number of notes per beat that does not leave any room for squares.

In the second sample we have n = 30 and m = 7. This works because 2 ≤ m < n and
m× n = 210 has no divisor k2 for any k > 1.

Input

• The input is a single squarefree integer 3 ≤ n ≤ 105.

Output

• Output an integer 2 ≤ m < n such that m× n is still squarefree.

If there are multiple possible solutions, you may output any one of them.

Sample Input 1 Sample Output 1
3 2

Sample Input 2 Sample Output 2
30 7

Sample Input 3 Sample Output 3
13 10

This page is intentionally left blank.

Problem K: Keep Him Inside 23

K Keep Him Inside Time limit: 1s

As a result of a long-standing war between the Sorcerers and the Orcs, you have been assigned
as officer of one of the prison blocks. Recently the leader of the Orcs has been captured and
placed inside a special cell. It works as follows: the cell is a convex polygon with at every
vertex a guard tower in which a Sorcerer is placed.

Thanks to the recent agreement between the Sorcerers and Orcs, called the Beneficial Activ-
ities for Prisoners in Cells, the leader of the Orcs should be able to move around freely in his
cell. You do not want your prisoner to escape, so you order the sorcerers to work together on
a containment spell. If done right, this creates a magical aura around the prisoner that will
prevent him from escaping.

In order for the containment spell to work, all Sorcerers need to channel a certain fraction of
their maximum power into the spell such that two things hold:

• The spell needs to be perfectly balanced: the sum of the fractions of power over all
Sorcerers must equal 1.

• The centre of the spell should coincide with the prisoner. This means that the average
of the positions of Sorcerers, weighted by the fraction of power they are channeling,
should be the location of the prisoner.

Given the layout of the cell and the location of the prisoner, assign a fraction of power each
Sorcerer should spend so that the containment spell works.

S1: 1/3 S2: 1/3

S3: 1/3

P

Figure K.1: The prison of sample 1. S1, S2, and S3 are the Sorcerers, while P is the prisoner. Note
that 1

3 S1 + 1
3 S2 + 1

3 S3 = 1
3 (0, 0) + 1

3 (3, 0) + 1
3 (0, 3) = (1, 1) = P .

Input

• The first line contains 3 ≤ n ≤ 10, the number of Sorcerers in guard towers and two
integers −104 ≤ x, y ≤ 104, the coordinates of the prisoner.

• Then follow n lines, each of which contains two integers −104 ≤ x, y ≤ 104, the coordi-
nates of a Sorcerer.

24 Problem K: Keep Him Inside

It is guaranteed that the locations are given in counter clockwise order and form a strictly
convex polygon, i.e. no three points lie on a line. The prisoner is located strictly inside the
polygon.

Output

• Output n lines where the ith line contains a floating point number between 0 and 1
inclusive: the fraction of power that the ith Sorcerer should use for the containment
spell to work.

If there are multiple possible solutions, you may output any one of them.

Your answer will be correct if the sum of fractions differs at most 10−4 from 1 and the weighted
centre of your spell is within distance 10−4 of the prisoner. Note that it may not be sufficient
to print your answer itself with 10−4 precision.

Sample Input 1 Sample Output 1
3 1 1
0 0
3 0
0 3

0.333333333333
0.333333333333
0.333333333333

Sample Input 2 Sample Output 2
4 2 1
0 0
4 0
4 4
0 4

0.5
0.25
0.25
0

Sample Input 3 Sample Output 3
5 4 3
0 2
0 -1
5 -2
5 4
2 5

0.2
0
0.1
0.7
0

Problem L: Lucky Draw 25

L Lucky Draw Time limit: 2s

You and your friends at the Betting against All Probability Club
are visiting a casino where the following game is played.

Each of the n players starts with k lives and puts in a fixed amount
of money. In each round of the game, each player flips a biased
coin and loses a life if she gets tails. The game ends when only
one player remains, in which case this person wins, or ends in a
draw if all remaining players lose their last life in the same round.
If there is a winner, she wins n times her original bet. In case of
a draw, no one wins anything.

Being a BAPC member you quickly realize the casino has an edge
here: whenever the game ends in a draw all of the contestants lose
the money they bet. You are now wondering what exactly is the
probability that this game ends in a draw, so you can figure out
how much the casino profits on average.

Input

• One line containing two integers, 2 ≤ n ≤ 50, the number of players, 1 ≤ k ≤ 50,
the number of lives each player has, and a floating point number 0.1 ≤ p ≤ 0.9, the
probability the coin lands heads.

Output

• Output a single floating point number: the probability of the game ending in a draw.
Your answer should have an absolute error of at most 10−6.

Sample Input 1 Sample Output 1
2 2 0.5 0.185185185

Sample Input 2 Sample Output 2
2 2 0.8 0.056241426

Sample Input 3 Sample Output 3
5 3 0.85 0.045463964

	Problems
	Appeal to the Audience
	Breaking Branches
	Conveyor Belts
	Deck Randomisation
	Efficient Exchange
	Find my Family
	Gluttonous Goop
	Historic Exhibition
	Inquiry II
	Jazz it Up!
	Keep Him Inside
	Lucky Draw

